

Outline	1111
 Electricity specificities Introduction Definitions Generation means Coal Gas Nuclear Renewable energies Hydraulic Wind & Solar Geothermal & Sea Generation costs Total cost & LCOE Sensibility analysis 	-
 Introduction Definitions Generation means Coal Gas Nuclear Renewable energies Hydraulic Wind & Solar Geothermal & Sea Generation costs Total cost & LCOE Sensibility analysis 	
 Definitions Generation means Coal Gas Nuclear Renewable energies Hydraulic Wind & Solar Geothermal & Sea Generation costs Total cost & LCOE Sensibility analysis 	
 Generation means Coal Gas Nuclear Renewable energies Hydraulic Wind & Solar Geothermal & Sea Generation costs Total cost & LCOE Sensibility analysis 	1
 Coal Gas Nuclear Renewable energies Hydraulic Wind & Solar Geothermal & Sea Generation costs Total cost & LCOE Sensibility analysis 	
 Gas Nuclear Renewable energies Hydraulic Wind & Solar Geothermal & Sea Generation costs Total cost & LCOE Sensibility analysis 	
 Nuclear Renewable energies Hydraulic Wind & Solar Geothermal & Sea Generation costs Total cost & LCOE Sensibility analysis 	
 Renewable energies Hydraulic Wind & Solar Geothermal & Sea Generation costs Total cost & LCOE Sensibility analysis 	
 Hydraulic Wind & Solar Geothermal & Sea Generation costs Total cost & LCOE Sensibility analysis 	
 Wind & Solar Geothermal & Sea Generation costs Total cost & LCOE Sensibility analysis 	
Geothermal & Sea Generation costs Total cost & LCOE Sensibility analysis	
Generation costs Total cost & LCOE Sensibility analysis	
Total cost & LCOE Sensibility analysis	
 Sensibility analysis 	
• Investment	
Power markets	
• Structure	
Modeling Description	
Regulation	
	OL

levestment costs Eff. diff. to LCOE						OE		
Technology	Start	With capture [USD/k/W]	Reference plast [USD/WW]	Efficiency LHV [%]	plast LHV [16]	Capt. rate [16]	Capture plant [USD/MWh]	Reference plant [USD/WWh]
Coal, Steam cycle,	2015	3 100-3 700	2 000 2 400	36	10	85	104-118	63-71
X	2030	2 150-3 250	1 500 2 300	44	8	85	76-102	51-66
Coal, Steam cycle,	2020	3 000-4 200	17502 350	36	10	90	100-128	58-70
Daycombustidin	2030	2 300-3 500	1 500-2 300	44	8	90	79-106	51-66
Coal KGCC Seleval	2015	3 000-3 700	2 000-2 400	35	11	85	102-119	63-71
Joan, Kaloo, Jenendri	2030	2 200-3 200	1 500-2 300	48	4	85	75-98	51.66
as of ca	2015	1 300-1 600	800-1 000	49	8	85	103-110	78-82
	2030	950-1 350	600-1 000	56	7	85	86-95	70-75
Gas, CC, Oxycombustion CA : Chemical Absorpt	2020 ion, CC : C	1 400-1 800 Combined-Cyc	700-1 000	48 ntegrated G	10 asification C	95 ombined-Cy	107-116 cle	7581
So, for no po	2020	1 400-1 900	700.1.000	48 ntegrated G	10 asification Co	95 ombined-Cy	107-116 cle	7581
So far, no po	2020 ion, CC : C	1 400 1 800 Combined-Cyc	700-1.000 ele, IGCC : I O2 captu	48 ntegrated G	10 asification Co tes on a	95 ombined-Cy commer	107.116 cle cial scale	75 81

R & D Technolo	ogies	
Air Capture		
 collecting CO2 from 	ambient air	
Biomass Co-firing		
The HyPr-Ring Pro	ocess	
 Japan, H2 		
The ZECA Process	5	
 Los Alamos Natio 	nal Laboratory, H2	
Hybrid Combustio	n Gasification Chemical Looping	Coal Power
Technology		
 ALSTOM 		
the Calcium looping	ng Process	
■ DOE		
Fuel Flexible Proce	ess	
 General Electric 		
Coal Direct Chemi	cal Looping Reforming Process &	Syngas Redox
Process		
Membrane		
• Etc.		
43	Retrofitting issue?	:fp
	Renomining issue i	SCHOOL

	Fuel	Moderator	Coolant			Spent Fuel Reprocessing	Steam	Main Economic and Safety
			Heat extraction	Outlet temp.	Pressure	Reprocessing	Efficiency	Characteristics
Magnox	Natural uranium metal (0.7% U ²³⁵) Magnesium alloy cladding	Graphite	Carbon dioxide gas heated by fuel raises steam in steam generator	360°C	300 psia	Typically within one year, for operational reasons	31%	Safety benefit that coolant cannot undergo a change of phase. Also ability to refuel whilst running gives potential for high availability
AGR	Uranium dioxide enriched to 2.3% U ²³⁵ Stainless steel cladding	Graphite	Carbon dioxide gas heated by fuel raises steam in steam generator	650°C	600 psia	Can be stored under water for tens of years, but storage could be longer in dry atmosphere	42%	Same operational and safety advantages as Magnox but with higher operating temperatures and pressures, leading to reduced capital costs and higher steam cycle efficiencies
PWR	Uranium dioxide enriched to 3.2% U ²³⁶ Zirconium alloy cladding	Light Water	Pressurised light water pumped to steam generator which raises steam in a separate circuit	317°C	2235 psia	Can be stored for long periods under water giving flexibility in waste management	32%	Low construction costs resulting from design being amenable to fabrication in factory-built sub- assemblies. Wealth of operating experience now accumulated world wide. Off load refuelling necessary
BWR	Uranium dioxide enriched to 2.4% U ²³⁵ Zirconium alloy cladding	Light Water	Pressurised light water boiling in the pressure vessel produces steam which directly drives a turbine	286°C	1050 psia	As for PWR	32%	Similar construction cost advantages to PWR enhanced by design not requiring a heat exchanger, but offset by need for some shielding of steam circuit and turbine. Off load refuelling necessary
CANDU	Unenriched uranium dioxide (0.7% U ²³⁵) Zirconium alloy cladding	Heavy water	Heavy water pumped at pressure over the fuel raises steam via a steam generator in a separate circuit.	305°C	1285 psia	As for PWR	30%	Good operational record but requires infrastructure to provide significant quantities of heavy water at reasonable costs.
RBMK	Uranium dioxide enriched to 1.8% U ²³⁵	Graphite	Light water boiled at pressure, steam used to drive a turbine directly	284°C	1000 psia	Information not available	31%	Information not available but operated in considerable numbers in the former USSR. Believed in the West to be inherently less safe

Indi	rect ei	nissi	ons c	of elec	ctricit	ty gei	nerati	ion			2 2 2	
		1 2	0	1	1	1						
GHG emi to the c	GHG emissions related to the construction		Nuclear		Wind, coast		Photovoltaic PCA now PCA near future			Hydro, s	to, small scale	
L	ifetime [vears]	PCA	IOA 10	PCA	10A 20	on roof	in roof	on roof	in roof	PCA 40	10A 40	
	[kg/kWpeak]	320	800	500	460	2500	1700	1500	800	2800	1900	
GHG	[g/kWh _{el}]	1.07	2.7	8.4	7.6	170	120	80	40	13	10	
emissions	contribution to emissions [%]	Steel : 72 Concrete : 24 Copper : 1.3 Plastics : 1.1 Alumin. : 0.7 Glass : 0.2	Machinery : 35 Services : 30 Constr. : 25 El.techn. : 10	Steel : 78 Concrete : 11 Copper : 5 Plastics : 5 Alumin. : 0.8	Machinery : 44 Metal prod. : 20 Phastics : 17 Constr. : 15 El.techn. : 10 Services : 1	Modules : 61 Steel : 32 Equipment : 7	Modules : 89 Steel : 0 Equipment: 11	Modules : 41 Steel : 47 Equipment: 12	Modules : 77 Steel : 0 Equipment: 23	Concrete : 55 Steel : 35 Plastics : 10	Constr. : 57 El.techn. : 32 Machinery :11	
							Sol	urce : Unive	ersity of Le	uven (Belg	um) - 2006	
									, <u> </u>		_	
.	6									i	SCHOOL	

 Short run vs. Long run Fixed costs are fixed during some period but Variable costs vary by the time. We define short run as a period during there are some fixed costs. 								
	Time	Cost	Technology					
	very short run	all cost are fixed	fixed					
	short run	some costs are fixed	fixed					
	long run	no costs are fixed	fixed					
	very long run	no costs are fixed	not fixed					
12	2		:f:					
- 1				SCHOOL				

Case study (plant costs & revenue, in UK)

132

Generation data	Units	Gas	Coal
Capacity	MW	375	375
Total fixed costs/yr	£m	14.83	30.49
Total variable costs	£/MWh	17.08	12.56
Base load price	£/MWh	23.50	23.50
Peaking load price	£/MWh	32.00	32.00
Base load utilization	%	55	88
Peaking utilization	%	35	35

1. What are the base and peak load profit for a year for Gas plant for the given utilization levels?

2. That level of base load utilization when the base load profit is equal to the peaking profit for gas of $\pounds 2.3m/yr?$

3. That level of base load utilization for coal plant resulting in zero profit?

IEA study 2010

Study includes:

Almost 200 power plants in OECD and non-OECD were studied

3

a.

CHOOL

- Power plants that could be commissioned by 2015
- Renewable and non-renewable

• Main assumptions:

- Real discount rates of 5% and 10%
- Carbon price of USD 30 per tonne of CO2
- Only financial costs were considered (neither social nor external)

• Uncertainties:

- Future fuel and CO2 prices
- Financing costs
- Construction cost
- Costs for decommissioning and storage
- Electricity prices
- Different energy policy contexts

140

Fuel cost calculation & efficiency impact									
	Mbtu	MWh th	GJ	Nm3	bl	tep	Gcal	Tec	1 🛛
Mbtu	1	0,2931	1,0549	28	0,172	0,025	0,252	0,04198	
MWh th	3,412	1	3,5992	95,536	0,588	0,0853	0,860	0,143	1.1
GJ	0,948	0,278	1	26,544	0,1634	0,0237	0,239	0,040	
Nm3	0,03571	0,010	0,03767	1	0,0062	0,00089	0,0090	0,0015	
bl	5,8	1,70	6,118	162,400	1	0,1450	1,46	0,24	
tep	40	11,72	42,194	1120	6,897	1	10,08	1,68	
Gcal	3,96825	1,16	4,186	111,111	0,68418	0,0992	1,00	0,17	
Tec	23,82129	6,98	25,128	667	4,107	0,59553	6,00	1,00	
1€ = 1.25\$			Coal		Gas				
Efficiency			43,80%		57%				
source			75(\$/t)		8 (\$/Mbtu)				
145								ļ	SCHO

Direct CO2-emissions price impact on generation cost							
	Source per thermal						
	IPCC	per toe	per GJ	MWh	per 1000 m3	per tonne	A
Coal		3,961	0,0943	0,3392		2,763	
Fuel C	Dil	3,101	0,0738	0,2656		3,12	
Natura	al Gas	2,333	0,0555	0,1998	2,08	2,827	
	What is the CO2 impact in €/Mwh₀? Coal Gas						
	Efficiency		43,80%		57.3%		
CO2 price			25	(€/t)	25 (€/t)		
147						if	CHOOL

Consider a utility facing with annual demand growth of <u>100MW</u> and must add to its capacity. It can build a Coal power plant with capacity of **200MW** at the capital cost of **180M\$** (Plant A) or it can build a **100MW** Fuel-oil power plant with a CAPEX of **100M\$** (Plant B). Yearly OPEX of plant A is equal to 19M\$ for each 100MW and that of plant B is 20M\$. 1 4 Discount rate of the Utility: **10%** Plants lifetime: Infinite Fuel costs: constant for coal but fuel-oil will change (as it is indexed on Oil price) ē. ٩, If we consider the flexibility of Fuel-oil units and make investment decision analysis according to the oil price variation, what would be the present value of the flow of cost for our energy system (whether Plant A or B or even both!)? л. SCHOOL

Finance & econometric models							
Geometric Brownian motion:							
$dp = udt + \sigma dz$	•• °:						
Elec. price variation $p = p$ stocha	astic: volatility						
deterministic : drift (big movements)							
Mean-reversion models:							
$\Delta p_t = \kappa (p_0 - p_t) \Delta t + \sigma \varepsilon \sqrt{\Delta t}$							
* The deterministic part depends on whether the price is currently above or below the equilibrium price.							
It can also be presented in locarithm which can increases the probability of high prices							
Jump-diffusion models: Empirical studies shows that Elec. price is not always normally distributed & strong	a price iumps are very probable						
	j prioc jumpo dro vory probablo.						
$dp = \mu p dt + \sigma_0 p dz + \sigma_z p \Phi dq$	isson process: probability of						
jur.	nps in a given time interval dt.						
The size of the jumps depends on the standard deviation σ and a normally distributed stochastic variable.							
$dp = \kappa(p_0 - p)dt + \sigma_0 pdz + \sigma_z p\Phi dq$	SCHOOL						

Efficiency incentives			
	Rate-of-Return	 Low incentive No benefit of cost reductions as return is fixed Costs can be shifted to customers, incentive to increase costs 	
	Revenue-Sharing / Profit-Sharing	 Medium incentives Revenues / profits resulting from cost reductions shared with customers Large sharing rule → incentives close to Rate-of-Return regulation Small sharing rule → incentives close to Cap Regulation 	
	Revenue-Cap	 Medium to strong incentives Profits can be increased by reducing costs as revenues are capped Possibility to increase profits by increased prices and decreased output Includes explicit factor for the anticipated efficiency increase (X-factor) 	
	Price-Cap	 Medium to strong incentives Profits can be increased by reducing costs as prices are capped Possibility to increase profits by increased output Requires explicit productivity increase via formula (X-factor) 	
	Yardstick	 Strong incentives Prices/revenues indexed to average cost/productivity improv. of industry Profits can be increased by reducing costs in relation to other companies 	
	217	SCHOO	DL

